Способ получения микросферического цеолита типа а высокой фазовой чистоты

Классификация по МПК: C01B

Патентная информация
Патент на изобретение №: 
2336229
Дата публикации: 
Понедельник, Октябрь 20, 2008
Начало действия патента: 
Понедельник, Апрель 16, 2007

Изобретение относится к области производства цеолитных адсорбентов и может быть использовано в нефтеперерабатывающей и химической промышленности. Для получения микросферического цеолита типа А высокой фазовой чистоты в водную суспензию каолина вводят растворы силиката натрия и подкисленного сульфата алюминия и вводят порошкообразный цеолит NaA с размером кристаллов 0,5-2,0 мкм в количестве 5-10 мас.%, считая на суммарную массу каолина и образующегося синтетического алюмосиликата. Водородный показатель (рН) приготовленной суспензии составляет 9,5-10,5. Количество каолина в смеси - 75-85 мас.%. Количество образующегося синтетического алюмосиликата в смеси - 15-25 мас.%. Суспензию подвергают распылительной сушке в потоке дымовых газов при температуре 350°С, прокаливают в "кипящем" слое при температуре 600°С, прокаленные гранулы кристаллизуют в щелочном алюминатном растворе, отмывают водой от избытка щелочи и высушивают. Изобретение позволяет получить цеолит с высокими адсорбционными и прочностными характеристиками и с высокой фазовой чистотой. 2 табл.


Предлагаемое изобретение относится к области производства цеолитных адсорбентов и может быть использовано в нефтеперерабатывающей и химической промышленности.

Известен способ получения синтетических цеолитов в виде микросферических гранул (а.с. СССР №146285, 1968 г.) путем распылительной сушки водной суспензии кристаллического цеолита с добавкой связующего вещества (высокопластичных и тонкодисперсных глин), взятой в количестве 10-35 мас.% от массы цеолита.

Недостатками известного способа являются низкие: фазовая чистота, адсорбционная емкость и износоустойчивость цеолита.

Известен способ получения сферических гранул синтетического цеолита, не содержащего связующих веществ, который заключается в предварительном получении сферических частиц SiO2 или Al2О3 путем коагуляции золя в гель. Стадию коагуляции проводят в органической жидкости, выбранной из группы спиртов или кетонов, например метаноле, этаноле, пропаноле, ацетоне. Сформованные сферические гранулы после сушки и прокалки подвергают кристаллизации в растворе алюмината или силиката натрия (патент США №3348911, 1967 г.).

Недостатком этого способа является сложность технологии. В процессе имеет место значительное выделение токсичных паров, являющихся сильными сердечно-сосудистыми и нервно-паралитическими ядами. Отделение микросферических гидрогелевых гранул от органической жидкости не может быть эффективно осуществлено.

Известен способ получения микросферического цеолита (а.с. СССР №361138, 1973 г.) путем распылительной сушки водной суспензии каолина, содержащей сульфат алюминия, и последующих стадий прокалки, кристаллизации и промывки гранул.

Недостатками этого способа являются низкие: фазовая чистота, адсорбционная емкость и прочность на истирание гранулированного цеолита.

Известен "Способ получения микросферических цеолитов" (а.с. СССР №361676), который заключается в: приготовлении водной суспензии каолина с влажностью 65 мас.%, содержащей силикат натрия в количестве 10 мас.%, считая на SiO2; распылительной сушке суспензии при температуре 350°С; прокалке микросферических алюмосиликатных гранул при температуре 700°С в течение 3 ч; кристаллизации гранул в щелочном алюминатном растворе при температуре 80°С в течение 6 ч; промывке откристаллизованных цеолитных гранул от избытка щелочи до рН=10,5 и их сушке.

Известный способ имеет недостатки.

1. Микросферические гранулы, получаемые в процессе распылительной сушки, имеют низкую прочность на истирание. Это приводит к разрушению микрогранул в процессе их пневмотранспорта в прокалочную печь, где прокалка протекает в "кипящем слое" гранул. Разрушение микрогранул ухудшает гранулометрический состав готового продукта и снижает его выход.

2. Микросферический цеолит обладает недостаточно высокими: фазовой чистотой, адсорбционной емкостью и износоустойчивостью.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является "Способ получения микросферического цеолита" (а.с. СССР №1256378, 1984 г.), который и выбран за прототип.

Сущность известного способа заключается в следующем.

В водную суспензию каолина с концентрацией каолина 100-200 г/л вводят растворы силиката натрия (SiO2=100 г/л) и подкисленного сульфата алюминия с концентрацией по Al2O3=20-25 г/л и 75-80 г/л по свободной серной кислоте. Водородный показатель (рН) суспензии составляет 10-11. Количество образующегося синтетического алюмосиликата в смеси - 10-20 мас.%. Суспензию подвергают распылительной сушке при температуре 350°С. Микросферические гранулы размером 50-100 мкм прокаливают в "кипящем" слое при температуре 600-700°С в течение 3 ч. Прокаленные гранулы кристаллизуют в щелочном алюминатном растворе. Состав реакционной смеси: 1,2Nа2O·Al2О3·1,8SiO2·50Н2O. Откристаллизованный микросферический цеолит типа А отмывают водой от избытка щелочи до рН=10,5 и высушивают при температуре 200-300°С в течение 4-6 ч.

Недостатками известного способа являются недостаточно высокие: фазовая чистота, адсорбционная емкость и износоустойчивость микросферического цеолита типа А, не содержащего связующих веществ.

Задачей предлагаемого изобретения является совершенствование технологии получения микросферического цеолита типа А, не содержащего связующих веществ, и, как следствие, получение цеолита с высокими адсорбционными и прочностными характеристиками и высокой фазовой чистотой.

Это достигается за счет использования следующих новых технологических приемов:

- дополнительное введение в исходную смесь, полученную путем смешения водной суспензии каолина с растворами силиката натрия и подкисленного сульфата алюминия, 5-10 мас.% порошкообразного цеолита NaA с размером кристаллов 0,5-2,0 мкм. Это обеспечивает получение микросферического цеолита типа А высокой фазовой чистоты, обладающего максимальной, для данного типа цеолита, адсорбционной емкостью;

- смешение исходной смеси сырьевых компонентов при рН, равном 9,5-10,5, что обеспечивает высокую износоустойчивость (механическую прочность) как сухих и прокаленных (промежуточные продукты), так и цеолитных гранул.

Указанные технологические приемы обеспечивают получение микросферического цеолита типа А, обладающего высокими (максимальными - сопоставили со свойствами порошкообразного цеолита типа А) фазовой чистотой, адсорбционной емкостью и износоустойчивостью.

Анализ известных способов получения микросферического цеолита типа А показал, что приготовление сырьевой смеси для получения гранул путем смешения суспензии каолина с раствором силиката натрия (SiO2=100 г/л) и подкисленного сульфата алюминия (Al2О3=20-25 г/л, H2SO4=75-80 г/л) при рН, равном 10,0-11,0 известно. Однако только факт дополнительного введения в сырьевую смесь 5-10 мас.% порошкообразного цеолита NaA с размером кристаллов 0,5-2,0 мкм и смешения сырьевых компонентов при рН=9,5-10,5 обеспечивает получение износоустойчивого микросферического цеолита типа А высокой фазовой чистоты, обладающего максимальной, для данного типа цеолита, адсорбционной емкостью.

Сущность предлагаемого изобретения заключается в следующем.

Приготавливают водную суспензию каолина с концентрацией сухого вещества 100-200 г/л. В суспензию вводят растворы силиката натрия с концентрацией по SiO2=100 г/л, подкисленного сульфата алюминия с концентрацией по Al2О3=20-25 г/л, по Н2SO4=75-80 г/л и дополнительно вводят порошкообразный цеолит NaA с размером кристаллов 0,5-2,0 мкм в количестве 5-10 мас.%, считая на суммарную массу каолина и образующегося синтетического алюмосиликата. Водородный показатель (рН) приготовленной суспензии составляет 9,5-10,5. Количество каолина в смеси - 75-85 мас.%. Количество образующегося синтетического алюмосиликата в смеси - 15-25 мас.%.

Суспензию подвергают распылительной сушке в потоке дымовых газов при температуре 350°С. Сухие микросферические гранулы прокаливают в "кипящем" слое при температуре 600°С в течение 3 ч. Затем прокаленные гранулы кристаллизуют в щелочном алюминатном растворе. Состав реакционной (кристаллизационной) смеси: 1,2Na2O·Al2О3·1,8SiO2·50Н2О. Откристаллизованный микросферический цеолит типа А отмывают водой от избытка щелочи до рН=10,5 и высушивают при температуре 200-300°С в течение 4-6 ч.

Сущность предлагаемого способа поясняется конкретными примерами его осуществления (см. таблицу 1 и 2).

Пример 1. К 53,4 л каолиновой суспензии с концентрацией по сухому веществу 150 г/л добавляют при перемешивании 19,1 мл раствора силиката натрия с концентрацией по SiO2 100 г/л и 4,53 л раствора подкисленного сульфата алюминия с концентрацией по Al2О3 20 г/л и 80 г/л по свободной серной кислоте. В исходную смесь дополнительно вводят 0,5 кг порошкообразного цеолита NaA (5 мас.%) с размером кристаллов 0,5-2,0 мкм.

После часового перемешивания однородную суспензию с рН=10 направляют на распылительную сушку, которую проводят в токе дымовых газов при 350°С. Полученные сухие микросферические гранулы пневмотранспортом направляют в прокалочный аппарат, где прокаливают в кипящем слое при 600°С. Прокаленные гранулы содержат 5 мас.% порошкообразного цеолита типа А, считая на суммарную массу каолина и синтетического алюмосиликата.

К 105 г прокаленных микросферических гранул приливают 531 мл щелочного алюминатного раствора концентрацией 42,3 г/л по Al2О3 и 105,4 г/л по NaOH. Реакционную массу состава 1,2Na2O·Al2O3·1,8SiO2·50Н2О подвергают кристаллизации. Откристаллизованный цеолит отмывают водой от избытка щелочи до рН промывной воды 10,5 и высушивают при 250°С в течение 5 ч.

Микросферический цеолит типа А, не содержащий связующих веществ, по данным рентгеноструктурного анализа обладает 99% степенью кристалличности. Адсорбционная емкость цеолита по парам воды при 20°С и относительном давлении P/PS=0,5 составляет 0,25 см3/г. Износоустойчивость цеолитных гранул 98 мас.%.

Условия приготовления суспензии (сырьевой смеси) для распылительной сушки и вещественный состав сухих микросферических гранул (после распылительной сушки) согласно остальным примерам по предлагаемому способу приведены в таблице 1.

Сопоставление физико-химических свойств образцов цеолитов типа А и промежуточных продуктов (микросферических гранул после распылительной сушки и прокалки), полученных по предлагаемому и известному способам, приведено в таблице 2. В этой же таблице приведены данные испытаний образцов цеолитов и промежуточных продуктов на износоустойчивость (механическую прочность) в шаровой мельнице (ОСТ 38 01176-79).

Если рН суспензии (сырьевой смеси) меньше 9,5 и, следовательно, содержание образовавшегося синтетического алюмосиликата в распыляемой суспензии больше 25 мас.%, то это приводит к уплотнению пористой структуры микросферических гранул после прокалки и к ухудшению свойств цеолитных гранул после кристаллизации. Увеличение рН суспензии больше 10,5 вызывает снижение содержания синтетического алюмосиликата в распыляемой суспензии менее 15 мас.%. Это нежелательно из-за невысокой износоустойчивости (прочности) промежуточных продуктов (сухих и прокаленных гранул) и откристаллизованного микросферического цеолита.

Введение в приготовленную для распылительной сушки сырьевую смесь более 10 мас.% порошкообразного цеолита NaA снижает износоустойчивость промежуточных продуктов (сухих и прокаленных гранул) и откристаллизованного микросферического цеолита типа А. Если количество добавки порошкообразного цеолита NaA меньше 5 мас.%, то снижаются фазовая чистота и адсорбционная емкость готового микросферического цеолита.

Если размер кристаллов порошкообразного цеолита NaA, вводимого в сырьевую смесь, крупнее 2,0 мкм, то это приводит к снижению износоустойчивости микросферического цеолита. Промышленное получение высокодисперсного цеолита NaA с размером кристаллов менее 0,5 мкм требует использования специальных технологических приемов и оборудования. Это значительно удорожает порошкообразный цеолит и делает нецелесообразным его использование в предлагаемом способе получения микросферического цеолита типа А.

Износоустойчивость как микросферического цеолита, так и промежуточных продуктов, получаемых по предлагаемому способу, превосходит износоустойчивость цеолита и промежуточных продуктов, получаемых по прототипу. Фазовая чистота и адсорбционная емкость микросферического цеолита типа А выше, чем у всех известных аналогов.







Таблица 1
Условия приготовления суспензии (сырьевой смеси) и вещественный состав сухих микросферических гранул
Примеры Содержание в суспензии, мас.% рН суспензии, ед. Порошкообразный цеолит - добавка в суспензию, мас.%
Каолин Синтетический алюмосиликат
Прототип 80-90 10-20 10,0-11,0 нет
1 80 20 10,0 5
2 75 25 9,5 5
3 85 15 10,5 5
4 75 25 9,5 10
5 85 15 10,5 10
6 сравнительный 80 20 10,0 3
7 сравнительный 80 20 10,0 15
8 сравнительный 70 30 9,0 5
9 сравнительный 90 10 11,0 5
10* сравнительный 80 20 10,0 5
* - размер кристаллов добавки порошкообразного цеолита 2,0-3,0 мкм.








Таблица 2
Свойства микросферического цеолита типа А высокой фазовой чистоты
Примеры Свойства цеолита
Фазовая чистота (степень кристалличности) по данным рентгеноструктурного анализа, мас.% Адсорбционная емкость по парам воды при 20°С и относительном давлении P/PS=0,5, см3 Износоустойчивость (механическая прочность) гранул, мас.%
сухих прокаленных цеолита
прототип 95-96 0,24 40-60 60-85 90-95
1 99 0,25 72 91 98
2 98 0,25 75 93 100
3 100 0,25 70 89 97
4 100 0,25 72 91 100
5 100 0,25 68 86 95
6 сравнительный 98 0,24 72 90 98
7 сравнительный 100 0,25 56 74 90
8 сравнительный цеолит А и гидросодалит 0,19 82 96 100
9 сравнительный 100 0,25 61 78 88
10 сравнительный 99 0,25 60 77 87